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Shunt Admittance of Overhead and
Underground Lines

* The shunt admittance of a line consists of the conductance and the capacitive
susceptance. The conductance is usually ignored because i1t 1s very small
compared to the capacitive susceptance.

* The capacitance of a line 1s the result of the potential difference between
conductors. A charged conductor creates an electric field that emanates outward
from the center of the conductor. Lines of equipotential are created that are
concentric to the charged conductor. This 1s illustrated in Fig.1.

Fig.1 Electric field of a
charged round
conductor
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Shunt Admittance of Overhead and
Underground Lines

- In Fig.1, a difference of potential between two points (P, and P,)
is a result of the electric field of the charged conductor. When
the potential difference between the two points 1s known, then
the capacitance between the two points can be computed.

- If there are other charged conductors nearby, the potential
difference between the two points will be a function of the
distance to the other conductors and the charge on each
conductor. The principle of superposition is used to compute the
total voltage drop between two points and then the resulting
capacitance between the points.

- The points can be points in space or the surface of two
conductors or the surface of a conductor and ground.
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General Voltage Drop Equation

* Fig.2 shows an array of N positively charged solid round conductors.
Each conductor has a unique uniform charge density of ¢ cb/m.

* The voltage drop between conductor i and conductor j as a result of
all of the charged conductors 1s given by

(ql*ln + ql*ln + qj*lnRD’+ qN*ln )
o (1)

O 6

Fl

l] 2TE

(2

+
. Vij
)

Fig.2 Array of round conductors
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General Voltage Drop Equation

RD; Dp
Vu — (c;1=r=111D1 + .-+ q; *lnR L+ g * In y + qN*lnDM)
(1)

Equation (1) can be written in a general form as
1] anzn 149N *ll’l (2)

TI.I

where

*c = g,¢, 1S the permittivity of the medium, g, 1s the permittivity of free
space = 8.85 x 10712 uF/m, ¢, is the relative permittivity of the medium
*g, 1s the charge density on conductor n cb/m

D . 1s the distance between conductor n and conductor i (ft)

*D,; 1s the distance between conductor # and conductor ; (ft)

D, 1s the radius (RD,) of conductor n (ft)
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Overhead Lines

* The method of conductors and their images 1s employed in the calculation of the
shunt capacitance of overhead lines.

* This is the same concept that was used in the general application of Carson's
equations.

* Figure 3 illustrates the conductors and their images and will be used to develop a
general voltage drop equation for overhead lines.

q;

TV IS 777777

+ j’
qi O
i

Fig.3 Conductors and images
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Overhead Lines

In Fig.3 it 1s assumed that
qi = =i, qj = —4q; (3)
Appling Equation (2) to Figure 5.3,

Sll‘.

Vii=— (QHH

qi ” j (4)
Sii Sy
f’!ff'f/;’fff> FLELL T
\qf

4 j

+ql*ln—+q}*ln +qj*1n '{')
J’

2TE

qi
Fig.3 Conductors and images
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Overhead Lines

qi = —qi, q; = —q; (3)

Vi (q-*lns”-i-q,_ ln—+qJ,=+=ln +qJ,=+=ln 20y (4)
Sij

2TE

Because of the assumptions of Equation (3) Equation (4) can be simplified to

-1 RD; Sij D;;

1 py— 2TE

ii ij Si,r'
1 S'”
* * * .k —_—
= (Cr': ln ln + q; ln u g;* In Di;‘)
q;
OT \6 - (qu ln + 2q; * ln—u) (5)
where
TTVI 7777777 T 777777 *S.; 1s the distance from conductor i to its image i’ ({t)

*S;; 18 the distance from conductor i to the image of
conductor ;' (ft)

*D; 1s the distance from conductor i to conductor j (ft)
°RD 1s the radius of conductor i in ft

+ q;

}_.

a O Fig.3 Conductors and images
[
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Overhead Lines
Vir=5— (Zq,, * ln + 2q;j *In —) (5)

U

Equation (5) gives the total voltage drop between conductor i and its image. The voltage drop
between conductor i and ground will be one-half of that given in Equation (5):

1 SU
Ve (4 in20) (6)
Equation (6) can be written in general form as
Vig=Fii * qi + Pij * q; (7)

where P;; and P; j are the self- and mutual “potential coefficients.”
For overhead lines the relative permittivity of air is assumed to be 1.0 so that

£0=1.0x 8.85 X 10712 F/m, &,;r=1.4240 x 1072 uF /mile (8)
Using the value of perm1tt1v1ty in puF/mile, the self— and mutual potential coefficients are
defined as P;; = 11.17689 In =L D = mile/uF 9)
P,;),- = 11.17689 * ln;mlle/,uF (10)
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Overhead Lines
P;;

11.17689 * In~i w0, L mile/uF 9)

.-"‘\

11.17689 * ln nnle/,uF (10)

Note: In applying Equations (9) and (10), the Values of RD;, §;;, S;;, and D;; must all be in the
same units. For overhead lines the distances between conductors are typlcally specified in feet
while the value of the conductor diameter from a table will typically be in inches. Care must be

taken to ensure that the radius in feet is used in applying the two equations.

For an overhead line of ncond conductors, the “primitive potential coefficient matrix” can be
constructed. The primitive potential coefficient matrix will be an ncond x ncond matrix. For a
four-wire grounded wye line the primitive coefficient matrix will be of the form

o~ o~

Paapabﬁac'ﬁan-
) PpaPppPpc Ppn
[Pprimitive} = | Poq Pep Pec " Pen (11)

—ﬁnapnbﬁnc'ﬁ

nn-
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Overhead Lines D
Paa.PabPac‘Pan
P,.P,,P,. P

[ﬁ o ] _ Aba Abb ...bc_ Abﬂ (11)
primitive P.o Py P P

-ﬁnaﬁnbﬁnc.ﬁnn-
The dots (+) in Equation (11) are partitioning the matrix between the third and fourth
rows and columns. In partitioned form Equation (11) becomes

-~

[PI}] [Pin]
[ pnmxtwe] - I[ n;] [ﬁnn] (12)

Because the neutral conductor is grounded, the matrix can be reduced using the “Kron
reduction” method to an n-phase x n-phase phase potential coefficient matrix [P ]

given by 1 ..

abc [ u] [Pm] [ nn] * [Pjn] (13)
The inverse of the potential coefficient matrix will give the n-phase x n-phase
capacitance matrix [C ;] (Copcl= [P [Aab{:]—l (14)
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Overhead Lines
[Capc]= [Papc] ™" (14)

For a two-phase line the capacitance matrix of Equation (14) will be 2 x 2. A
row and a column of zeros must be inserted for the missing phase. For a single
-phase line, Equation (14) will result in a single element. Again rows and
columns of zero must be inserted for the missing phase. In the case of the
single-phase line, the only nonzero term will be that of the phase in use.

Neglecting the shunt conductance, the phase shunt admittance matrix 1s given

by
[Vape]l= 0+ j * w *[Capc] uS/mile  (15)

where
w=2x*mx*f=3769911
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Example 1

Determine the shunt admittance matrix for the overhead line. Assume that the
neutral conductor 1s 25 ft above ground.

The diameters of the phase and neutral conductors from the conductor table
(Appendix A) are:

Conductor, 336,400 26/7 ACSR, d. = 0.721 in.,RD,. = 0.03004 ft; 4/0 6/1
ACSR,d, = 0.563 in.,RD, = 0.02346 ft

<25 ft— 4.5 ft —
ai b ? c ? 7{
3.0 ft—>)

4.0 ft

= X

25.0 ft

) 1
1

MON N N N N N N N NG NN NN G N N

Overhead line of Example 4.1
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Example 1

Using the Cartesian coordinated in Example 4.1, the image distance matrix 1s
given by

Sij = |di — d;

—

Where d; is the conjugate of d;

For the configuration the distances between conductors and 1images in matrix

form are [ 58 58.0539 58.4209 54.1479]
[S] 58.0539 58 58.1743 54.0208 ft
58.4209 58.1743 58 54.0833

[54.1479 54.0208 54.0833 50

The self-primitive potential coefficient for phase a and the mutual primitive

potential coefficient between phases a and b are

B, = 11.17689 * In——— = 84.5600 mile/uF
0.03004

P, =11.17689 * In 222

= 35.1522 mile/uF
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Example 1
P, =11.17689 * In jﬂ mile/uF (9)

P, = 11.17689 * In- mile/uF (10)

J
Using Equations (9) and (10), the total primitive potential coefficient matrix is

computed to be '84.5600 35.1522 23.7147 | 25.2469]
(5 1_[351522 845600 28.6058 | 28.3590
primitive 23.7147 28.6058 84.5600| 26.6131

25.2469 283590 26.6131] 85.6659.

Since the fourth conductor (neutral) 1s grounded, the Kron reduction method 1s used to
compute the “phase potential coefficient matrix.” Because only one row and one
column need to be eliminated, the [P,,] term is a single element so that the Kron
reduction equation for this case can be modified to

mile/uF

Pis * P;
— p J4
= Pya

wherei=1,2,3and;j=1, 2, 3.
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Example 1

For example, the value of P, 1s computed to be

Pey = Py — 24724 = 28,6058 — 25223 — 19 7957

Following the Kron reduction, the phase potential coefficient matrix is

77.1194 26.7944 15.8714
[Papc]=|26.7944 751720 19.7957
15.8714 19.7957 76.2923

Invert [P,,.] to determine the shunt capacitance matrix:

0.015 —0.0049 —0.0019
[Capc]=[P]71=|-0.0049 0.0159 —0.0031
~0.0019 —0.0031 0.0143

Multiply [C,,.] by the radian frequency to determine the final three-phase shunt

admittance matrix: - , , ;
j5.6711 —j1.8362 —j0.7033

[Vape]=1%376.9911*|Crpcl=| —j1.8362  j5.9774 —j1.1690| uS/mile
—j0.7033 —j1.169  j5.3911
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Concentric Neutral Cable Underground Lines

Most underground distribution lines consist of one or more concentric neutral
cables. Fig.4 illustrates a basic concentric neutral cable with center conductor
being the phase conductor and the concentric neutral strands displaced
equally around a circle of radius R,

Fig.4 Conductors and images
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Concentric Neutral Cable Underground Lines

Referring to Fig.4 the following definitions apply:

R, represents the radius of a circle passing through the centers of the neutral
strands.

d. represents the diameter of the phase conductor.

d, represents the diameter of a neutral strand.

k represents the total number of neutral strands.

Fig.4 Conductors and images

[OWA STATE UNIVERSITY ECpE Department



Concentric Neutral Cable Underground Lines
= XNy ¢ In ot 2)

U 2ne D,;

The concentric neutral strands are grounded so that they are all at the same potential.
Because of the stranding, it 1s assumed that the electric field created by the charge on
the phase conductor will be confined to the boundary of the concentric neutral strands.
In order to compute the capacitance between the phase conductor and ground, the
general voltage drop of Equation (2) will be applied. Since all of the neutral strands are
at the same potential, it is necessary to determine only the potential difference between
the phase conductor p and strand 1.

(qp*ln—+q1*ln—+q2*ln—+ ql*]n _|_ qk*ln

Pl Jne 2TCE
where . d . d. (16)
c 2 ! s 2
It 1s assumed that each of the neutral strands carries the same charge such that
q
=02 =q; = qe=—"" (17)
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Concentric Neutral Cable Underground Lines

Vp12 (qp*ln—+q1*ln—b+q2*ln—+ £ q *

lnh+ qk*ln— (16)
Rp Rp

Equation (16) can be simplified to

RDgq D49

_ 1 ] Rp 4p Dq; D4
Vor=az |ap * I = 2 (IS 4122 4 oo 4 In 22 4 o4 122 )]

_4p ,1 Rp 1 (ll‘l RDs*D1z*D1i~--D1k)] (18)

n
2te | RD. k RE
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Concentric Neutral Cable Underground Lines

The numerator of the second In term in Equation (18) needs to be expanded.
The numerator represents the product of the radius and the distances between
strand i and all of the other strands. Referring to Fig.4, the following
relations apply:

2T

012 = T
41T
013 = 201, = ?

In general, the angle between strand #1 and any
other strand #i 1s given by

(i—1) %271

01, = ({—1)04, = i

Fig.4 Conductors and images
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Concentric Neutral Cable Underground Lines

The distances between the various strands are given by

. 012 .
Dy, =2 %Ry * sm(T) = 2 * Ry * sm(E)

13 _2m (20)
D3 =2 %Ry * sm(T) = 2% Ry * sm(?)
The distance between strand 1 and any other strand i 1s given by
04; i—1)*m
Di; =2 %Ry * sin(%) =2 xRy * sin(( k) ) (21)

Equation (21) can be used to expand the numerator of the second log term of
Equation (18):
RDS * D12 aaw Dll aan le

= RD, * RE1[2sin (g) % 2 sin (2%) 2 sin((i —kl)n) 2 Sin((k ; 2. )]

(22)
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Concentric Neutral Cable Underground Lines
RDg % D1y ... Dy ... Dyp

= RD, * Rf~1[2sin (E) x 2 sin (Z—H) w2 Sin((i — 1)H) 2 sin((k — 1 ) (22)

k k k k
Vil = [P] * [q] (23)
The distance between strand 1 and any other strand i is given by
01 — 1) #
Dii =2 %Ry * Sin(f) =2 * Ry * sin((l k) Tr) (21)

Equation (21) can be used to expand the numerator of the second log term
of Equation (18):
RDS * D12 “'Dli ...le

= RDg * R¥~1[25sin (%) * 2 sin (2—;) 2 sin((i _kl)ﬂ:) 2 sin((k ; D )] (22)
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Concentric Neutral Cable Underground Lines
1 k«RDs*RE™M\] ¢ R 1 k*RD;
Vo1 00 [l R_DC__( R{;b )]_2_111 ’lnR—i—E(ln Ry, )] (24)

Since the neutral strands are all grounded, Equation (24) gives the voltage drop

between the phase conductor and ground. Therefore, the capacitance from
phase to ground for a concentric neutral cable 1s given by

_qp _ 2TE
Cpg_vpl " In(Rp/RD.)—(1/k) In(k*RDs/Rp) (25)

where

*c = g,¢, 1s the permittivity of the medium

*g, 1s the permittivity of free space = 0.01420 pF/mile
*¢, 1s the relative permittivity of the medium
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Concentric Neutral Cable Underground Lines

The electric field of a cable 1s confined to the insulation material. Various types
of insulation material are used, and each will have a range of values for the
relative permittivity. Table.1 gives the range of values of relative permittivity
for four common insulation materials.

Table.1 Typical Values of Relative Permittivity (€,.)

Range of Value of Relative

Permittivity
Polyvinyl chloride (PVC) 3.4-8.0
Ethylene-propylene rubber (EPR) 2.5-3.5
Polyethylene (PE) 2.5-2.6
Cross-linked polyethylene (XLPE) 2.3-6.0

27
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Concentric Neutral Cable Underground Lines

Cross-linked polyethylene 1s a very popular insulation
material. If the minimum value of relative permittivity is
assumed as 2.3, the equation for the shunt admittance of the
concentric neutral cable 1s given by

o 77.3619
Vag = jln(Rb/RDc) — (1/k)In(k * RDs/Rp) Ho

/mile

(26)
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Example 3

Determine the three-phase shunt admittance matrix for the concentric neutral
line.

R,=R=0.0511f =0.631n
Diameter of the 250,000 AA phase conductor = 0.567 in. Therefore,

0.567
B =——=02835in

Diameter of the #14 CU concentric neutral strand = 0.0641 in. Therefore,

0.0641
D =—

[OWA STATE UNIVERSITY ECpE Department
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Example 3
Substitute into (26)

77.3619

Yag =J (R, JRD,) — (1/I) In(k = RD./Ry) (26)
D 77.3619
Yag = J11(0.6132/0.2835) — (1/13) In(13 * 0.03205/0.6132)

= j96.6098 uS /mile

The phase admittance for this three-phase underground line 1s

j96.6098 0 0
[Yabcl= 0 J96.6098 0 uS /mile
0 0 j96.6098 |
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ape-Shielded Cable Underground Lines

A tape-shielded cable 1s shown in Figure 5. Referring to Figure 5 R, 1s the radius of a
circle passing through the center of the tape shield. As with the concentric neutral
cable, the electric field is confined to the insulation so that the relative permittivity of
Table 1 will apply.

Table 1 Typical Values of Relative Permittivity (€,-)

Al or Cu phase Range of Value of
conductor Relative
Permittivity

vl Polyvinyl chloride 3.4-8.0
(PVC)
Cu tape shield Ethylene-propylene 2.5-3.5
rubber (EPR)
acke
Jacket Polyethylene (PE) 2.5-2.6
Fig.5 Tape-shielded conductor Cross-linked 2.3-6.0

polyethylene (XLPE)
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ape-Shielded Cable Underground Lines

_ 1] Rp _9p ( RDs D12 D Dm)]
p1=5 _qp*lnRDc P In—+In R + - +lnR + -+ 1n R
_ap [, Ry 1 RDS*D:IZ*DH D1k (18)
In——-={In -
2me | RD. k Ry,

The tape-shielded conductor can be visualized as a concentric neutral cable
where the number of strands & has become infinite. When & in Equation (18)
approaches infinity, the second term in the denominator approaches zero.

Therefore, the equation for the shunt admittance of a tape-shielded conductor
becomes

0. ;773619
) 1n(R,/RD,)
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Example 4

Determine the shunt admittance of the single-phase tape-shielded cable.
Outside diameter of the tape shield 1s 0.88 in. The thickness of the tape

shield (7) 1s 5 mil. The radius of a circle passing through the center of the
tape shield 1s given by

5
T = M = 0.005
ds—T . 0.88-0.005

= 0.43751n

Rb= 5

The diameter of the 1/0 AA phase conductor 1s 0.368 1n. Therefore,

dp  0.368

RD. = =, = 0.1840 in
Substitute into Equation (27):
77.3619 77.3619

Yag =J100R7RD.) ~ / In(0.4375/0.184) /893179 uS/mile
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Example 5.4

The phase admittance for this three-phase underground line 1s

0 0 0
[Vapcl=|0  j89.3179 0| uS/mile
0 0 0
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Sequence Admittance

The sequence admittances of a three-phase line can be determined in much
the same manner as the sequence impedances were determined. Assume that
the 3 % 3 admittance matrix i1s given in S/mile. Then the three-phase
capacitance currents as a function of the line-to-ground voltages are given by

Icapa Yaa Yab Yac FVﬂQﬁ
Icapy [=|Yba Ybb  Ybc||Vbg (28)
Icap, Yea Yeb Yec _ch_

[Icapabc [.Vabc] [VLGabc] (29)

Applying the symmetrical component transformations

[Icapy,]=[As] -1 [‘Icapabc]:[AS]_l abcllAs]VLGy12] (3 O)
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Sequence Admittance

[Icapﬂ 12]=[A5] 1 [‘rcapabc]z[‘qs]_l [Yabc] [As] [VLGU 12] (3 O)

From Equation (30), the sequence admittance matrix is given by

(1)

[Vo12] = [As]  apcllAs]=[Y10 Y11 V12

Y20 Y21 Y22

Yoo JYo1 J’Gj

For a three-phase overhead line with unsymmetrical spacing, the sequence
admittance matrix will be full. That 1s, the off-diagonal terms will be nonzero.
However, a three-phase underground line with three identical cables will only
have the diagonal terms since there 1s no “mutual capacitance” between
phases. In fact, the sequence admittances will be exactly the same as the phase
admittances.
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Thank You!
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